3D Timeline: Reverse Engineering of a Part-based Provenance from Consecutive 3D Models

Jozef Doboš, Niloy J. Mitra & Anthony Steed
Disk Full of Models Problem

Temporal management of 3D assets
Understanding of legacy datasets
Provenance extraction and visualization
Our Aims

- Reverse engineer *plausible* editing history
- Summarise important high-level changes
- Provide a tractable solution
Target Operations
Additions and deletions of parts
Changes in polycount, size and transformations
Duplications, instancing and repeated copying
Related Work

Chronicle [Grossman et al. 2010]
MeshFlow [Denning et al. 2011]
Exploring Shape Variations [Jain et al. 2012]
MeshGit [Denning & Pellacini 2013]
Inverse Image Editing [Hu et al. 2013]
Overview
System Design

1. Independent *keyframe* pre-processing
2. Semantic analysis
3. Timeline visualisation
Pre-processing
Key Observations

Complex shapes are made up of parts
Modeling is often characterized by *massing*
Neighboring keyframes are highly related
Pre-processing
Hierarchical Face Clustering [Garland et al. 2001]
PCA-aligned bounding boxes [Jain et al. 2012]
Part-based hierarchy [Shapira et al. 2010]
Correspondence Estimation

\[E_S := \| C_{\square}[w, h, d] - C'_{\square}[w', h', d'] \| \] (2)

\[E_L := \| \| \vec{v} - \vec{v}_P \| - \| \vec{v}' - \vec{v}'_P \| \| \] (3)

\[S_{ij} := \alpha E_S + (1 - \alpha) E_L \] (4)
A1: Correspondence Propagation

Greedy assignment based on affinity matrix
Proceeds from the last to the first keyframe
Uses majority vote for self-correction
t_{i-1}

\cdots

\cdots

t_i

\cdots

\cdots
Semantic Analysis
\[\Phi_{m,n} = \begin{bmatrix} F_1 & \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ C_{1,1} & C_{1,2} & \cdots & C_{1,n} \\ C_{2,1} & C_{2,2} & \cdots & C_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m,1} & C_{m,2} & \cdots & C_{m,n} \end{bmatrix} & F_2 & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \]
Addition
Deletion
Life-span
Duplication
Polycount increase
Polycount decrease

Size increase
Size decrease
Translation
Repeated copy
Instancing
Timeline Compression

Simplifies apparent complexity of matrix Φ

Row-wise collapse

Column-wise collapse
A2: Repeated Copying Detection

Incremental duplication in a self-similar group
1-parameter regular structure [Pauly et al. 2008]
At least 3 components, their ordering and T
C_S
C_s

$2x$
Timeline Visualization
Evaluation
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Frames</th>
<th>Polycount</th>
<th>Components</th>
<th>Corr. [ms]</th>
<th>Analysis [ms]</th>
<th>Total [s]</th>
<th>Throughput [C/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medieval</td>
<td>6</td>
<td>16,005</td>
<td>510</td>
<td>51</td>
<td>40</td>
<td>0.09</td>
<td>5,604</td>
</tr>
<tr>
<td>Brick</td>
<td>16</td>
<td>16,703</td>
<td>141</td>
<td>47</td>
<td>25</td>
<td>0.07</td>
<td>1,958</td>
</tr>
<tr>
<td>Engine</td>
<td>55</td>
<td>3,414,103</td>
<td>2,460</td>
<td>1,435</td>
<td>512</td>
<td>1.95</td>
<td>1,264</td>
</tr>
<tr>
<td>Cruciform</td>
<td>74</td>
<td>924,123</td>
<td>23,695</td>
<td>74,712</td>
<td>1,140</td>
<td>75.85</td>
<td>312</td>
</tr>
<tr>
<td>Portico</td>
<td>158</td>
<td>2,442,104</td>
<td>3,662</td>
<td>1,908</td>
<td>784</td>
<td>2.70</td>
<td>1,346</td>
</tr>
<tr>
<td>Character</td>
<td>9</td>
<td>7,609,539</td>
<td>189</td>
<td>6,685</td>
<td>1,875</td>
<td>8.56</td>
<td>22</td>
</tr>
<tr>
<td>Experience</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Time [s]</td>
<td>SUS</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>P1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>5.86</td>
<td>70.0</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>P2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1.75</td>
<td>75.0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>P3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>3.08</td>
<td>75.0</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>P4</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>2.33</td>
<td>67.5</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>P5</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>3.60</td>
<td>44.5</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>P6</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>4.25</td>
<td>47.5</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>P7</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>2.35</td>
<td>37.5</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>1.48</td>
<td>37.5</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>AVG</td>
<td>25%</td>
<td>25%</td>
<td>50%</td>
<td>3.09</td>
<td>56.8</td>
<td>50%</td>
<td>88%</td>
</tr>
</tbody>
</table>